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1 INTRODUCTION                                                                     
ne of the most powerful notions in system analysis is the 
concept of topological structures and their generalizations. 
In principal, generalized open sets play a crucial role in 

general topology, they are interesting research topics of many 
topologists. Moreover, generalized open sets are of significant 
applications in general topology and real analysis, which con-
cern various modified forms of continuity, separation axioms 
etc. Recently, the generalized open sets (α, β, semi-, pre- and γ) 
open sets are utilized to develop the rough sets and approxi-
mation spaces [2]; which could be extended to computer sci-
ence and information systems. Our goal in this work is to use 
the concepts of compactness and ideals to enrich topological 
spaces with new tools that help in applications. Levine [8] in-
troduced the concept of semi-open sets. In 1983 Abd El-
Monsef et al. [1] introduced the concept of β-open sets in topo-
logical spaces. The concept of compactness modulo an ideal 
was first defined by Newcomb [12] and has been studied by 
Rancin [13]. In 1990 it has been extensively studied by Hamlett 
and Jankovic [6].  Newcomb [12] also defined the concept of 
countable compactness modulo an ideal.  
 
The purpose of the present paper is to introduce and study 
some types of compactness modulo an ideal called βI-compact 
and countably βI-compact spaces. 
 
Throughout we work with a topological space (X, τ) (or simply 
X), where no separation axioms are assumed. The usual nota-
tion Cl(A) for the closure and Int(A) for the interior of a subset 
A of a topological space (X, τ ). 

2     PRELIMINARIES 
Definition 2.1 [7] A non-empty collection I of sub-
sets of a non-empty set X is said to be an ideal on X, if 
it satisfies: 
(a) A∈I and B⊆A → B∈I. 
(b) A∈I and B∈I→ A∪B∈I. 

We denote by If (resp., Ic) the ideal of finite 
(resp., countable) subsets of X. 
 
Lemma 2.2 [6] (a) The intersection of two ideals on 
a non-empty set X is an ideal, but the union of two 
ideals is not an ideal in general. 
(b) The sum I∨J of two ideals I and J on a non-empty 
set X is the ideal {E∪H : E∈I and H∈J}. 
 
Definition 2.3 A subset A of a topological space 
(X,τ) is said to be: 
(i) β-open [1](semi-pre-open [4]), if A⊆Cl Int Cl A. 
(ii) semi-open [8], if A⊆Cl Int A. 
(iii) γ-open [10], if A⊆Int Cl A∪Cl Int A. 
 
The complement of β-open (resp., semi-open, γ -
open) is β-closed (resp., semiclosed, γ-closed). 
 
The class of all β-open (resp., semi open, γ-open) 
sets of topological space (X,τ) are denoted by 
βO(X, τ) (resp., SO(X, τ), γO(X, τ)). Also, τ 
⊆SO(X,τ) ⊆γO(X,τ)⊆βO(X, τ). 
 
Definition 2.4 A topological space (X,τ) is said to 
be: 
(a) Submaximal [5], if every dense subset of X is open 
in X. 
(b) Extremlly disconnected (briey E.D.) [15], if the 
closure of each open set of X is open in X. 
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Theorem 2.5 If (X,τ) is E.D., then β-open set is γ-
open set. 
Definition 2.6 A topological space (X,τ) is said to 
be: 
(a) β-compact [9], if every β-open cover of X has a 
finite subcover. 
(b) Countably β-compact [9], if every countable β-
open cover of X has a finite subcover. 
(c) β-Lindelof [8], if every β-open cover of X has a 
countable subcover. 
 
Definition 2.7 A function f:(X,τ)→(Y,σ) is said to 
be: 
(a) β-irresolute [9], if the inverse image of each β-
open set in Y is a β-open set of X. 
(b) β-continuous [1], if the inverse image of each open 
set in Y is a β-open set of X. 
(c) Mβ-open [11], if the image of each β-open set in X 
is a β-open set of Y. 
 
Given a topological space (X,τ) and x∈X, we define 
by τ(x) = {U∈τ : x∈U}. Let (X, τ, I) be a topological 
space with ideal I and A⊆X, then the local function of 
A with respect to I and τ [14] A*(I)= {x∈X:U∩A∉I 
for each U∈τ (x)}. For every topological space (X,τ,I) 
with ideal I, there exists a topology τ*(I), finer than τ , 
generated by the base (I,τ)={U-E : U∈τ and E∈I}. 
Additionally, Cl*(A)=A∪A* defines a Kuratowski 
closure operator for τ*(I). 
 
Lemma 2.8 [12] The following properties hold: 
(a) If f:(X, τ, I)→(Y, σ) is a surjection function, then 
f(I) ={f(A) : A∈I} is an ideal on Y. 
(b) If f:(X, τ)→(Y, σ, J) is an injection function, then 
f-1(J) ={f-1(B) :B∈J} is an ideal on X. 
 
Definition 2.9 A subset A of a space (X, τ, I) is said 
to be I-compact [12] (resp., SI-compact [3]), if for 
every cover {Uλ: λ∈Λ} of A by open (resp., semi-
open) sets of X, there exists a finite subset Λ0 of Λ 
such that 
 A-∪{Uλ : λ∈Λ0}∈I. The space (X, τ, I) is said to be 
I-compact (resp., SI-compact), if X is I-compact 
(resp., SI-compact) as a subset 

3 βI-COMPACT SPACES 
 

Definition 3.1 A space (X, τ, I) is said to be β-
compact modulo an ideal or simply βI-compact if for 
every cover {Uλ : λ∈Λ} of X by β-open sets of X, 
there exists a finite subset Λ0 of Λ such that  
X-∪{Uλ:λ∈Λ0}∈I. 
 
Theorem 3.2 For a space (X, τ, I)  the following 
statements are equivalent: 
(a) (X, τ, I)  is βI-compact. 
(b) (X, τ*, I)  is βI-compact. 
(c) (X, βO(X), I)  is I-compact. 
(d) For any family {Fλ:λ∈Λ} of β-closed sets of X 
such that ∩{Fλ:λ∈Λ}=∅, there exists a finite subset 
Λ0 of Λ such that ∩{ Fλ:λ∈Λ0}∈I. 
 
Proof (a) � (b) Let {Uλ : λ∈Λ} be a τ*-β-open cover 
of X such that Uλ=Vλ - Eλ, where Vλ∈βO(X, τ) and 
Eλ∈I. Now {Vλ : λ∈Λ} is β-open cover of X and so 
there exists a finite subset Λ0 of Λ such that  
X - ∪{Vλ : λ∈Λ0}=E∈I. This implies that 
 X - ∪{Uλ:λ∈Λ0}⊆ E∪[∪{Eλ : λ∈Λ0}]∈I. Therefore  
(X, τ*, I) is βI-compact. 
(b) �  (a) Follows directly from the fact that τ⊆τ*. 
(a) � (c) It is obvious. 
(a) � (d) Let {Fλ : λ∈Λ} be a family of β-closed sets 
of X such that ∩{Fλ : λ∈Λ}=∅. Then {X-Fλ : λ∈Λ} 
is a β-open cover of X. By (a) there exists a finite sub-
set Λ0 of Λ such that X-∪{X-Fλ:λ∈Λ0}. This implies 
that ∩{Fλ : λ∈Λ0}∈I. 
(d) � (a) Let {Uλ : λ∈Λ} be a β-open cover of X, then 
{X-Uλ : λ∈Λ} is a collection of β-closed sets and 
∩{X-Uλ : λ∈Λ}=∅. Hence there exists a finite subset 
Λ0 of Λ such that ∩{X-Uλ : λ∈Λ0}∈I. This implies 
that X-∪{Uλ : λ∈Λ0}∈I.Therefore (X, τ, I) is βI-
compact. 
 
The following Theorems are obvious and the proofs 
are thus omitted. 
 
Theorem 3.3 For a space (X, τ, I) the following 
statements are equivalent: 
(a) (X, τ) is β-compact. 
(b) (X, τ, If ) is βIf -compact. 
(c) (X, τ, {∅}) is β{∅}-compact. 
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Theorem 3.4 Let I and J be two ideals on a space 
(X,τ) with I⊆J. If (X,τ, I) is βI-compact, then it is βJ-
compact. 
 
Corollary 3.5 For any ideal I, every β-compact space 
is βI-compact. 
 
Corollary 3.6 (a) If (X, τ , I∩J) is β (I∩J)-compact, 
then (X, τ, I) is βI-compact and (X, τ, J) is βJ-
compact. 
(b) If (X, τ, I) is βI-compact and (X, τ, J) is βJ-
compact, then (X, τ, I∨J) is β(I∨J )-compact.  
 
If (X,τ) is submaximal and E.D. and from the fact 
τ=SO(X, τ)=βO(X, τ)=γO(X, τ), we deduce the fol-
lowing theorem. 
 
Theorem 3.7 If (X,τ) is submaximal and E.D., then 
each of βI-compactness, SI-compactness, γI-
compactness and I-compactness are equivalent. 
 
From the Definition of ideal Ic, the following theorem 
is obvious. 
 
Theorem 3.8 If (X,τ, Ic) is βIc-compact, then (X, τ) is 
β-Lindelof 
   
Corollary 3.9 If (X,τ, Ic) is βIc-compact, then (X, τ) 
is Lindelof. 
 
Theorem 3.10 If f:(X, τ, I)→(Y, σ) is a β-irresolute 
(resp., β-continuous) surjection and (X, τ, I) is βI-
compact, then (Y, σ, f(I)) is βf(I)-compact (resp., f(I)-
compact). 
 
Proof Let {Vλ : λ∈Λ} be a β-open (resp., open) cover 
of Y. Then {f-1(Vλ) : λ∈Λ} is a β-open cover of X and 
hence there exists a finite subset Λ0 of Λ such that X- 
{f-1(Vλ) : λ∈Λ0}∈I. Since f is surjective, by Lemma 
2.8. we have Y- ∪{Vλ : λ∈Λ0}=f(X - ∪{f-1(Vλ) : 
λ∈Λ0}∈f(I). Therefore, (Y, σ, f(I)) is βf(I)-compact 
(resp., f(I)-compact). 
 
Theorem 3.11 If f:(X, τ)→(Y, σ, J) is an M-β-open 
bijection and (Y, σ, J) is βJ-compact, then (X, τ, f-1(J)) 
is βf-1(J )-compact. 
 

Proof Since f:(X, τ)→(Y, σ, J) is an M-β-open bijec-
tion, then f-1 is a β-irresolute surjection. Since (Y, σ, J) 
is βJ-compact, by Theorem 3.10., we obtain that 
 (X, τ, f-1 (J)) is βf-1 (J)-compact. 
4 COUNTABLY βI-COMPACT SPACES 
 
In this section, we introduce a class of countably com-
pact spaces in terms of ideals called countably βI-
compact. 
 
Definition 4.1 A space (X, τ, I) is said to be countably 
βI-compact if for every countable β-open {Un: n∈N} 
of X there exists a finite subset N0 of N such that  
X-∪{Un: n∈N0}∈I, where N denotes the set of posi-
tive integers. 
 
From the Definitions, we have the following rela-
tionships: 
 
βI-compact   �  countably β I-compact 
       ↓                                       ↓ 
 
γI-compact   �  countably γ I-compact 
      ↓                                       ↓ 
 
SI-compact  �   countably SI-compact 
      ↓                                       ↓ 
  
 I-compact    �   countably I-compact 
 
The reverse implication does not hold. However, we 
have the following result: 
 
Theorem 4.2 If (X, τ, I) is countably βI-compact and 
(X, τ) is β-Lindelof space, then (X, τ, I) is βI-compact. 
 
Proof  Obvious. 
 
Theorem 4.3 For a space (X, τ, I) the following 
statements are equivalent: 
(a) (X, τ, I) is countably βI-compact. 
(b) For any countable family {Fn : n∈N} of β-closed 
sets of X such that ∩{Fn : n∈N}=∅ there exists a fi-
nite subset N0 of N such that ∩{Fn : n∈N0}∈I. 
(c) (X, τ*, I) is countably βI-compact. 
Proof (a) � (b) Let {Fn : n∈N} be a countable family 
of β-closed sets of X such that ∩{Fn : n∈N}=∅. Then 
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{X - Fn : n∈N} is a countable β-open cover of X. By 
(a) there exists a finite subset N0 of N such that X - 
∪{X - Fn : n∈N0}∈I. This implies that ∩{Fn : n∈ 
N0}∈I. 
(b) � (a) Let {Un : n∈N} be a countable β-open cover 
of X, then {X - Un : n∈N} is a countable collection of 
β-closed sets and ∩{X - Un : n∈N}=∅. Hence there 
exists a finite subset N0 of N such that ∩{X - Un : 
n∈N0}∈I. Therefore, we have X - ∪{Un : n∈N0}∈I. 
This show that (X, τ, I) is countably βI-compact. 
(a)�(c)Obvious. 
 
The following two Theorems are easily obtained and 
the proofs are thus omitted. 
 
Theorem 4.4 Let (X, τ, I) be countably βI-compact. If 
J is an ideal on X with I⊆J, then (X,τ, J) is countably 
βJ -compact. 
 
Theorem 4.5 For a space (X, τ) the following state-
ments are equivalent: 
(a) (X,τ)  is countably β-compact. 
(b) (X,τ, If )  is countably βIf -compact. 
(c) (X,τ, {∅})  is countably β{∅}-compact. 
 
Corollary 4.6 (a) If (X, τ, I∩J ) is countably  β(I∩J)-
compact, then (X,τ, I) is countably βI-compact and 
 (X, τ, J) is countably βJ -compact. 
(b) If (X, τ, I) is countably βI-compact and (X, τ, J) is 
countably βJ -compact, then (X, τ, I∨J) is countably 
β(I∨J)-compact. 
 
Theorem 4.7 Let f:(X, τ, I)→(Y, σ) be an β-irresolute 
(resp., β-continuous) surjection function. If (X, τ, I) is 
countably βI-compact, then (Y, σ, f(I)) is countably 
βf(I)-compact (resp., countably f(I)-compact). 
 
Proof Let {Vn : n∈N} be a countable family of β-
open (resp., open) cover of Y. Then {f-1(Vn) : n∈N} is 
a countable β-open cover of X and hence there exists a 
finite subset N0 of N such that X - ∪{f-1(Vn) : 
n∈N0}∈I. Now since f is surjective, we have  
Y - ∪{Vn : n∈N0}=f(X - ∪{f-1(Vn) :  n∈N0}∈f(I). 
Therefore, (Y, σ, f(I))  is countably βf(I)-compact 
(resp., countably f(I)-compact). 
 

Theorem 4.8 If f:(X, τ) → (Y, σ, J) is an M-β-open 
surjection and (Y, σ, J) is countably βJ-compact, then 
(X, τ, f-1 (J)) is countably βf-1 (J)-compact. 
 
Proof Since f is an M-β-open surjection and by Theo-
rem 4.7., we obtain that (X, τ, f-1 (J)) is countably  
βf-1 (J)-compact 
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